論 文

北海道沿岸における海浜断面の特性と bar 形状の変化

Characteristics of beach profiles and changes of bar formations at coasts of Hokkaido

戸巻 昭三*・竹澤 三雄**・後藤 浩**

Shozo TOMAKI, Mitsuo TAKEZAWA and Hiroshi GOTOH

要旨:本研究は、北海道の太平洋、日本海、オホーツク海の各沿岸における苫小牧海岸、石狩海岸、猿骨海岸の深浅測量から得られたそれぞれの海浜断面のうち、汀線から stable point (S.P) までの間に生ずる bar 形状の変化が海浜断面の形状に与える影響について考察し、それらの海浜断面の形状に規則性があることをフラクタル次元によって表現した。

キーワード: 海浜断面地形, bar, stable point, 自己相似性, フラクタル次元

1. はじめに

北海道は太平洋,日本海,オホーツク海の3つ の海域に囲まれ,約2,767km(島嶼を除く)の海岸 線を有し,それぞれ特徴ある気象・海象条件によ り海浜断面地形を形成している¹⁾。

そこで本研究は、太平洋、日本海、オホーツク 海の各沿岸における苫小牧海岸、石狩海岸、猿骨 海岸の深浅測量から得られたそれぞれの海浜断面 の特性と、汀線から stable point (S.P.)²⁾までの間に 生ずる bar 形状の変化が海浜断面の形状に与える 影響について考察し、それらの海浜断面の形状に 規則性があることを、フラクタル次元によって表 現した。

2. 石狩, 苫小牧. 猿骨海岸の概要

本研究の対象とする北海道の石狩海岸,苫小牧 海岸,猿骨海岸の概要は次のとおりである。

図1に示す日本海沿岸848kmのうち石狩湾沿岸 192kmの湾奥に位置する石狩海岸は、石狩湾新港 の建設着手の1973年から今日に至るまで、毎年、 夏(7~8月)と冬(12月)の年2回深浅測量を実施し

ている。その結果,石狩湾新港建設の進捗に伴っ て,港を挟んで南側海岸は侵食性,北側海岸は堆 積性の傾向が現れ,石狩湾新港の建設が海浜断面 に影響を与えているものと考えられる。

また,太平洋沿岸 954km のうち,弓形の形状を なす日高・胆振沿岸 261km の変曲点に位置する苫 小牧海岸は,大規模港湾(苫小牧港東港区)が建設 予定であったため,東西 20km という非常に広い 範囲を深浅測量の調査区域とした。この苫小牧海 岸は,深浅測量調査時において,港湾工事が未着

* 正会員 (株)クマシロシステム設計, ** 正会員 日本大学理工学部 土木工学科

手だったため、人工構造物による影響のない自然 海岸であったが、その後の港湾建設により海浜断 面が変化した。さらに、猿骨海岸は、北見沿岸 413kmの北方向に位置し、この猿骨海岸に流出す る2級河川である猿骨川(流域面積 99.1km²,計画 高水流量 450m³/s)の河口閉塞対策の一環として深 浅測量調査を行った。特にオホーツク海沿岸は他 の海岸には見られない流氷が来襲し、その流氷期 間をまたいで2ヶ年継続で深浅測量調査を行った。 深浅測量調査の範囲や調査期間等の内容は表1に 示すとおりである。

3. 波浪特性と底質の遷移状態

日本海,太平洋,オホーツク海海域における石 狩,苫小牧,猿骨海岸に来襲する波浪と底質粒径 によって,それぞれの海岸の漂砂移動形態の遷移 条件について巨視的な検討を行った。

なお、石狩海岸や苫小牧海岸の波浪観測データ は北海道開発局が建設中の石狩湾新港や苫小牧港 東港区における観測データを使用した。しかし、 猿骨海岸は波浪観測を実施していなかったので猿 骨海岸の 160km 南に位置する紋別港の観測デー タを用いた。

堀川ら⁶は,海浜断面の分類を行うにあたって, 海底勾配,底質粒径,沖波波高,および波長を用 いた式を提案している。また Shibayama・ Horikawa⁷⁾は、波による底面せん断応力と底質粒子 の自重による抵抗力の比であるシールズ数 ϕ_m に 対する底面における水粒子速度の振幅 u_b と底質 粒子沈降速度 ω_o との比を用いることにより、漂砂 の移動形態の遷移条件を与えている。

そこで、Shibayama・Horikawa が与えた $\phi_m \& u_b/\omega_o$ の関係図を用いて、表 1 に示す石狩海岸、 苫小牧海岸、紋別海岸の各々 1 年間の波浪観測デ ータから有義波高($H_{1/3}$) とそれに対応する周期 ($T_{1/3}$)を有義波高の高い順に並べ、表 2 に示す高 波浪、中間波浪、小波浪の 3 分割にした標本を抽 出し、 $\phi_m \& u_b/\omega_o$ の関係を求め図 2 に示した。

なお、砕波点付近から採取した底質中央粒径の 平均値は石狩 0.15mm, 苫小牧 0.38mm, 猿骨 0.20mm で、シールズ数 ϕ_m の海底面における摩擦 係数 $f_{\omega}^{(8)}$ は、浅海域までの風波の発達計算で f_{ω} =0.01~0.02 が妥当な値として用いられているこ とから f_{ω} =0.015 とした。

図2に示されるように,漂砂移動形態の遷移条 件は,波浪に伴う流体運動の特性が異なるため, 波形勾配の大きい石狩,猿骨,苫小牧海岸順に明 確に区分された。

そのうち,苫小牧海岸では高波浪時においても シートフローの移動形態の区分に入ったものはな く,浮遊移動,遷移領域,掃流移動,移動なしの 区分に分布している。

表1 対象海岸と現地調査

海岸名		深浅測量 の 範 囲	測線数と海浜断面数	実測年月	既発表論文	波浪の観測期間と 標本数 (n)
石	港の北側	3, 150m	6 測線 (間隔 200~1, 200m) 72	1984 年~1991 年 7~8 月 〕	海洋開発論文 ³⁾	1972 年 1 月~12 月
狩	港の南側	3, 550m	6 測線 (間隔 400~1, 200m) 80	12 月 ∫	1999 年	n=106
苫八	小牧	20. Okm	19 測線 (間隔 1,000m) 95	1972 年 3 月, 8 月 1973 年 2 月, 8 月, 12 月	海洋開発論文 ⁴⁾ 1998 年	1972 年 1 月~12 月 n=105
猿	骨	2, 000m	21 測線 (間隔 100m) 84	1974 年 9 月 1975 年 6 月, 7 月, 11 月	海洋開発論文 ⁵⁾ 2000 年	1975 年 5 月~12 月 n=115

沿岸域学会誌/第20巻 第2号 2007.9

		単位:波高	(m), 周期(S)
区分	石狩海岸	苫小牧海岸	紋別海岸 (猿骨)
高波浪	7.7m(9.3s)	6. 1m(15. 5s)	7. 3m(12. 9s)
	∼4.0(6.6)	~4. 0(13. 9)	~4. 4(9. 9)
中間波浪	4. 0 (5. 3)	3. 9 (8. 2)	4. 3 (10. 6)
	~2. 3 (6. 2)	~2. 1 (6. 5)	~2. 3 (9. 4)
小波浪	2. 2 (6. 1)	2. 0 (6. 2)	2. 2 (9. 4)
	~0. 3 (5. 5)	~0. 2 (8. 9)	~0. 3 (6. 2)

表2 各海岸の波高と周期の区分

図2 各海岸における海浜地形の移動形態の遷移条件

また,石狩海岸と猿骨海岸では,シートフロー の移動形態と浮遊移動が全体のそれぞれ 1/3 を占 め,残りの区分が遷移領域と掃流移動の形態であ る。

以上から,底質粒径を一定と仮定した場合,シ ートフロー⁹⁾の移動形態が全体の 1/3 を占める石 狩,猿骨海岸では,高波浪時に大量の土砂が岸向 きに移動し,海浜断面の形状に影響を与える。

また,砕波による浮遊移動¹⁰⁾については,巻 き波砕波の頻度の多い苫小牧海岸では,崩れ波砕 波の傾向が強い石狩や猿骨海岸に比べて底質の浮 遊砂が著しく,その浮遊砂が沿岸流によって大量 に運ばれた海岸が形成される。このように,海岸 に来襲する波浪によって砂の移動形態が区分され, それぞれ異なった海浜断面が形成するものと考え られる。

4. 海底断面地形の特徴

図3は、石狩、苫小牧、猿骨海岸の深浅測量か

ら得られたそれぞれの海岸における海浜断面の一 例である。

以上の海浜断面を同じスケールで重ね合わせ, bar の規模や海底勾配などについて考察した。そ の結果,まず第1の特徴として,これら3つの海 岸の trough 最深部水深と bar 頂部水深の差(比高) は,石狩海岸で2.7m,苫小牧海岸で1.7m であり, 石狩海岸の bar の高さは苫小牧海岸の約1.6 倍で ある。一方,猿骨海岸における bar の比高はさら に小さく1.0m 程度で, bar の岸沖移動も少ない。

第2の特徴は、前浜の勾配は猿骨海岸で1/11, 苫小牧海岸で1/20,石狩海岸で1/75である。この ように、石狩海岸では緩勾配を形成し、苫小牧海 岸では急勾配を形成している。また、苫小牧海岸 では汀線より沖側約150m付近に大きなbarが形 成されており、これは、前浜に作用する外力の違 いから生ずるものと考えられる¹¹⁾。

また,猿骨海岸の前浜の勾配は,さらに急勾配 を形成しており,これは流氷によるものと考えら れる。

図4は,猿骨海岸より南東4kmに位置する猿払 海岸に流出する猿払川(流域面積373.5 km²,計画 高水流量700m³/s)河口改修計画のため,1972年 ~1974年に実測した海浜断面である。この調査は 沿岸方向2000mの範囲について行ったもので, 1973年1月上旬に流氷が海岸に接岸し,同年3月 上旬に離岸した後,実測したものである。

図4の1973年3月の実測断面に注目すると,測

図4 猿払海浜断面実測図

点 No.800 では流氷が離岸する際,水際線付近の砂 を削って前浜を侵食し,1200m離れた測点No.2000 の実測断面では,逆に流氷が接岸する際,海底の 砂が海岸に引き寄せられ,さらに流氷が離岸する 際に,水際線付近の砂が海面に引き出された重複 の状態である。このように流氷の接岸と離岸が繰 返し行われることによって前浜が急勾配になった ものと推定される。

木岡ら¹²) によると,流氷の下面は凹凸はあるも のの,その喫水は平均が0.61m,最大が8.0m程度 で年変動が大きく,また流氷速度の中央値は0.17 m/s,最大値は約1.5m/sで,これは海氷密接度や海 流(潮流),風速などの状況に大きく依存する。

しかし、流氷塊の規模は、その密接度や接岸地 域によって異なるが、流氷が接岸・離岸する際、 ローリングやピッチングなどにより汀線付近の前 浜勾配が流氷による一種の海食¹³⁾にも似た現象 を受けるものと考えられる。とくに、オホーツク 海のように流氷が来襲する海岸では,このような 海浜断面の形状が現れる。

第3の特徴は、3つの海岸のbar 頂部から沖方 向の海底勾配は石狩海岸で1/122、苫小牧海岸で 1/142、猿骨海岸で1/141という緩勾配によって形 成されている。

以上のように、石狩海岸の海浜断面は、bar の 岸側における前浜の勾配は緩勾配であるのに対し、 苫小牧・猿骨海岸では急勾配であり、bar の沖側 の海底勾配はいずれの海岸も比較的緩やかな勾配 である。

5. 海浜断面地形変化とフラクタル¹⁴⁾

海浜地形の研究は,地形学の研究者の手によっ て形態学的観点から開始され,海岸域に見られる さまざまな地形の特徴や時間的変化が現地調査を 通して調べられてきた。

しかし,自然界に存在する海岸地形は限りなく 複雑な形をしており,簡単にその特徴をとらえる ことはできないが,その複雑な形を表現するため に非整数の値をとりうるフラクタル次元を使うこ とによって多くの自然界の複雑な形を取扱うこと が可能であることに注目した。

ある具体的な形が与えられた時に、一辺の長さ が L の立方体であったとすると、その表面積 S は $6L^2$ 、体積 V は L^3 となり、次の比例式が成り立つ。

米国気象物理学者 Lovejoy¹⁵⁾は、人工衛星やレー ダーを使って見た雲の面積 S とその周長 L の関係 において、複雑な雲の形を小さな正方形に分割し、 雲の周辺を含む正方形と雲の内部の正方形の個数 を数え、それぞれを L_N、 S_N と置き

 $L_N^{1/D} \propto S_N^{1/2}$ (2)

が成り立っているならば, 雲の形は D 次元的であ

沿岸域学会誌/第20巻 第2号 2007.9

るとした。それは,式(2)に示すように, S_N は雲の面積に比例する量であり $S_N^{1/2}$ は1次元的な量になっているからである。

このような考え方から、多くの雲の面積 S とそ の周長 L の関係を両対数グラフにプロットしたと ころ、図5に示すように S のべき乗が L に比例し、 $L_N \ge S_N$ が式(2)で表せることが明らかになった。

そして図5の直線の傾きから決定される雲のフ ラクタル次元(D)は1.35と算出された。このよう に、フラクタルで導入された自己相似性や非整数 の次元という概念で、自然界の図形の持つ複雑さ をフラクタル次元によって説明できることを明ら かにした。

そこでこの Lovejoy の考え方を海浜断面に適用 して,複雑な海浜断面をフラクタル次元によって 説明することを試みた。

図6は、海浜断面と海底勾配の関係を示したもので、太線AFCは海浜断面の海底面を示したもの

である。

水際線Aから垂直に下した線と海浜断面の変化 が顕著でなくなる地点²⁾(stable point S.P.) C か ら,水平線と平行に引いた線との交点 E によって 囲まれた AFCDE を海浜断面の断面積 S と仮定し, その周長Lは AFCDE とした。そして面積 S と周 長 L から,フラクタル次元を算出した。

なお、海浜断面を汀線から沖側の S.P.までの範 囲にしたのは、砂浜海岸における海浜断面の変化 が、主に波浪や潮汐などの外的条件によって影響 され、特に砂の移動が活発な砕波帯における漂砂 量は、海浜断面のうち、汀線から砂の移動が顕著 でなくなる地点までの間(stable point)で生じて いるものと考えたからである。

表1に示した各海岸の深浅測量図から得られた 海浜断面について,石狩海岸152(北側72,南側 80)断面,苫小牧海岸95断面,猿骨海岸84断面の 面積Sと周長Lを求め,それぞれの断面積Sと周 長Lの関係をプロットしたのが図7,図8,図9 である。

なお,図7(全体)は堆積海岸である石狩湾新港

沿岸域学会誌/第20巻 第2号 2007.9

の北側海岸と侵食海岸の南側海岸の海浜断面の面 積Sと周長Lを合わせてプロットしたものである。 ここで, nは標本数, rは相関係数である。

図 7~9から,いずれの海岸においても図5に示 される Lovejoy の雲の面積Sと周長Lの関係と同 様に,Sのべき乗がLに比例することが明らかに なった。したがって,各海岸の海浜断面の変化を フラクタル次元(D)で算出すると,表3に示さ れるように1.152,1.080,1.110となり,石狩海岸 のフラクタル次元は最も高い値を示し,他の海岸 よりもその地形変化が複雑であることを示した。

また,図7(全体)に示されるように石狩海岸 (北側海岸と南側海岸を含む)のフラクタル次元 (D)の値1.152に対し,その相関係数が0.991と 非常に高く,漂砂移動によって堆積傾向にある北 側海岸と侵食傾向にある南側海岸の海浜断面には 自己相似形が存在することになる。

海浜断面の自己相似形に関する具体的な事例と して、宇多ら¹⁶⁾は、相良港を挟んだ南、北の侵 食性と堆積性の海浜断面地形を重ね合わせた結果、 相似な形になり、そこから沿岸漂砂の阻止率を近 似的に求めている。

海岸名	海底断面数 (n)	フラクタル 次元 (D)	相関係数 (γ)
石狩	152	1. 152	0. 991
北側	72	1. 154	0. 993
南側	80	1. 138	0. 988
苫小牧	95	1.080	0. 904
猿 骨	84	1.110	0.911

表3 3つの海岸のフラクタル次元

6. 海底勾配と海浜地形の関係

6.1 bar の岸沖移動と海浜地形

図6に示す海浜断面において,水際線Aにおけ る前浜勾配と S.P.付近の海底勾配,そして bar の 岸沖移動と bar の高さがどの程度,海浜断面の形 成に影響力を持っているかを知ることは,海浜断 面の変形を考える上で非常に有効である。 そこで bar の岸沖移動に伴って海浜断面に及ぼ す影響を評価するため,図6に示す海浜断面の bar によって得られた角度をそれぞれ β , θ とし, 水 際線 A と S.P.までの水平距離0を角度 β によって 0_{1} 角度 θ によって 0_{2} までを影響する範囲と定め てN= $0_{2}/0_{1}$ を算出した。すなわち,

$h_b = \ell_1 \tan \beta$	 (3)
h'= $\ell_2 \tan \theta$	 (4)

 $h_c = h_b + h'$ (5)

から

N= ℓ_2/ℓ_1 =(ℓ tan β -h_c)/(h_c- ℓ tan θ) ………(6) が求められる。

である。

なお, $\tan \beta \ge \tan \theta \ge \tan \theta$ ar 頂部勾配と呼称する。

すなわち、この「bar 頂部勾配」は、bar の岸沖 移動と bar の頂部水深の変化に伴って海浜断面の 地形変化について表現できる一つの指標となり得 ると考えたからである。

図 10 は, 石狩海岸の港を挟んで南側(侵食傾向) と北側(堆積傾向), 苫小牧海岸, 猿骨海岸の N= 0₂/0₁ のヒストグラムである。なお, 式(6)におい て N の成立条件に満たないものは削除した。した がって, 図 10 の標本数 n は, 表 1 に示す海浜断面 数より少ない。

表 4 は,各海岸における N=0₂/0₁の中央値,平 均値,標準偏差である。

また,表5は,石狩海岸の北側と南側,苫小牧海 岸,猿骨海岸のbar頂部勾配tan β とtan θ の平均値 を求め,平均値が最大となった猿骨海岸の値を1.0 とし,石狩海岸(北側,南側),苫小牧海岸のtan β とtan θ のbar 頂部勾配を示したものである。

図 10, 表 4, 表 5 より海浜断面と bar 頂部勾配 との関連性を考察すると次の通りである。

海岸名	標本数	中央値	平均值	標準偏差
石 狩 (港の南側)	64	2. 870	3. 182	1.517
石 狩 (港の北側)	50	3. 823	4. 651	3. 117
苫小牧	37	2.104	2. 427	1.667
猿 骨	73	2. 121	2. 417	1.006

表 4 N=Q₂/Q₁の比較

N=l₂/l₁における bar 頂部勾配の比較 表 5

у⊢цьр	海岸の特徴	bar 頂部勾配		図3のbar
海厈名		tanβ	tanθ	より沖側の 海底勾配
石 狩 (港の南側)	石狩湾新港によ って沿岸漂砂が 阻止された侵食 性の海岸	(0. 0114) 0. 25	(0. 0084) 0. 56	_
石 狩 (港の北側)	石狩湾新港によ って沿岸漂砂が 阻止された堆積 性の海岸	(0. 0113) 0. 25	(0. 0087) 0. 58	1/122
苫小牧	波浪特性により 堆積と侵食が繰 返されほぼ平衡 海岸	(0. 0106) 0. 23	(0. 0131) 0. 88	1/142
猿骨	流氷により海底 地形が S.P. 付近 まで撹乱されて いる海岸	(0. 0460) 1. 0	(0. 0149) 1. 0	1/141

()は平均値

II.n

図 10 N=l₂/l₁の頻度分布

表4より、石狩(南側)、苫小牧、猿骨海岸のN の値は、標準偏差が小さく中央値および平均値に かなり集中しているが、石狩(北側)海岸の場合は 標準偏差が比較的大きくNのバラツキが大きい。

これは、堆積傾向にある石狩(北側)海岸は、他 の海岸より bar の岸沖移動のほか,海浜断面の変 化に与える沿岸漂砂の影響が大きいものと推測さ れる。

表5より石狩海岸(南側,北側)や苫小牧海岸の tan βの平均値は、猿骨海岸の約 1/4 であるが、S.P. 付近の tan θ の平均値は,石狩海岸(南側,北側) において猿骨海岸の約 1/2 であり、苫小牧海岸で 約4/5である。

以上の結果,石狩海岸の bar 頂部より沖側の海 底勾配 tan θ の平均値は, 海浜断面が侵食傾向や堆 積傾向であっても,移動する土砂が細粒径のため, 苫小牧海岸や猿骨海岸よりも緩やかな勾配になっ ているものと考えられる。

また,図10に示すように,石狩海岸の北側と南 側海岸のNの頻度分布から想定される海浜断面は、 侵食傾向にある南側海岸において、水際線付近の 急激な侵食と bar より S.P.付近までの土砂の堆積 から,水際線付近の勾配が北側海岸より急となり, またNの平均値は北側海岸に比べてやや小さい。 しかし, 北側海岸と南側海岸の bar 頂部勾配 tan β

さらに図10より,水際線付近の勾配が急な苫小 牧海岸と猿骨海岸において, N=0,/01の頻度分布は ほぼ同形であり、N=2の頻度が最多であることか ら,水際線より 201=02, すなわち, 0/3 の位置に bar 頂部が多く発生することが明らかになった。

一方、水際線付近の勾配がかなり異なっている にもかかわらず、苫小牧海岸の bar 頂部勾配 tan βの平均値は、表5に示されるように石狩海岸の $\tan \beta$ の平均値とほぼ同じ値である。これは、図 3 から明らかなように石狩海岸と苫小牧海岸の bar 頂部の位置がかなり異なった地点に発生している ことによるものと考えられる。すなわち,苫小牧 海岸の水際線付近の勾配が石狩海岸の勾配に比べ てかなり急であるが,苫小牧海岸の bar 頂部の発 生位置が図 6 の AF 線に沿って石狩海岸よりもか なり岸側の方に発生するためである。

また,猿骨海岸と苫小牧海岸の bar 頂部勾配 tan θ の平均値が,石狩海岸の tan θ の平均値よりもか なり大きい。これは,猿骨海岸と苫小牧海岸の bar や S.P.の位置が,石狩海岸の bar および S.P.の位置 と異なることによるものであり,流氷や沿岸漂砂 の影響がその原因であると考えられる。

6.2 bar 頂部勾配(tanβ)と前浜勾配の関係

本論における bar 頂部勾配($\tan \beta$)は、図6に 示すように、深浅測量で基準にしている干潮水際 線と bar 頂部を結んだ線の勾配であり、また、前 浜勾配($\tan \alpha$)は干潮水際線から trough 方向へ向 けての海底勾配で、干潮水際線Aより沖方向20m の地点から垂直に下した線が、海底地形と交差す る地点における水深(h_1)によって得られる勾配で ある。

図 11 は,表1に示すように苫小牧海岸における 19 測線(間隔 1000m)の深浅測量結果のうち,無 作為に1測線を抽出し,その実測月毎の5 断面を 重ね合わせたものである。

そこで、この複雑な海浜断面の bar の岸沖移動 と bar 頂部水深の変化を同時に表現できるよう、 bar 頂部勾配($\tan \beta$)と前浜勾配($\tan \alpha$)の関係に、 パラメータとして bar 頂部水深を選びプロットし たのが図 12 であり、海浜断面の変化がフラクタル 次元の算定に影響与えるのかどうかを明らかにし ようとしたものである。

図 12 に示すように, bar 頂部勾配(tan β)が大き くなると前浜勾配($tan \alpha$)は小さくなり, bar 頂部 勾配($\tan \beta$)が小さくなると前浜勾配($\tan \alpha$)は大 きくなり、また、前浜勾配($\tan \alpha$)が大きくなると、 bar 頂部水深が深くなるにつれて bar 頂部勾配(tan β)が大きくなる。複雑な海浜断面の前浜勾配(tan α)は、bar の位置や高さによって影響されること が明らかになった。しかし、図7に示される石狩 海岸のように同一海域において外力が同じであれ ば、隣接する海浜断面の地形が侵食傾向にある場 合と堆積傾向にある場合にその傾向が違っても, 漂砂量の供給という問題を除けば、同じ海域にお ける波浪条件によって生じた海浜断面から得られ たフラクタル次元は変わらない。したがって、海 浜断面の前浜勾配や, bar の岸沖移動, bar 頂部水 深などの変化によって、フラクタル次元は影響を 受けないものと考えられる。

7. 結論

海岸の構造物設計にあたっては,縦断的に変化 している砂浜の特性としての形状を定義する必要 がある。

そこで, 複合して発生する海浜断面形状を定義 する一つの方法として, 自然界の不規則な要素で 絡み合った海浜断面の形状をフラクタル次元で表 現することを提案した。

具体的に,石狩海岸における石狩湾新港を挟ん で南北両海岸ならびに苫小牧・猿骨海岸の海浜断 面の面積Sとその周長Lの関係にフラクタル次元 の考え方を適用し,それぞれの海岸の海浜断面の フラクタル次元を算定した。その結果,それらの 海浜断面のフラクタル次元が異なることが明らか になった。

以上,石狩・苫小牧・猿骨海岸の深浅測量より 得られた海浜断面の特徴ならびに bar 形状の変化 などについて要約すると次のとおりである。

- ①太平洋岸にある苫小牧海岸の海浜断面の漂砂の 移動形態は、シートフローはほとんど見受けら れなく、浮遊移動、遷移領域、掃流であった。
- ②日本海およびオホーツク海沿岸の石狩海岸と猿
- 骨海岸の漂砂の移動形態はほぼ同じであった。 ③オホーツク海沿岸の、猿骨海岸の前浜勾配が苫 小牧海岸より急であるのは、流氷の影響による ものと思われる。
- ④石狩・苫小牧・猿骨海岸の海浜断面のフラクタ ル次元は1.15~1.08となった。
- ⑤石狩湾新港を挟さんで堆積性と侵食性の海浜断面が生じるが、両海岸の海浜断面のフラクタル次元はほぼ同じ値となった。
- ⑥海浜断面の前浜勾配や,barの岸沖移動やbar 頂部水深などの変化によって、フラクタル次元 は影響を受けない。
- ⑦複雑な海浜断面の形状には規則性があり、それ

をフラクタル次元で表現できることを明らかに したが,さらに多くの海岸においてこの調査研 究を進める必要がある。

謝辞

本研究を行うにあたり,北海道開発局,北海道 稚内土木現業所より資料の提供を頂いたことを記 し謝意を表します。

参考文献

- 国土交通省河川局編:海岸統計(平成 15 年), 2004.
- 2) 久宝雅史・戸巻昭三:海浜横断面の平衡点に ついて,第28回海講論,pp.247-250,1981.
- 7) 戸巻昭三・竹沢三雄:石狩湾新港における防 波堤周辺の海浜変形について,海洋開発論文 集,第15巻,pp.475-480,1999.
- 74) 戸巻昭三・竹沢三雄:現地観測による汀線と 沿岸砂州の移動過程について,海洋開発論文 集,第14巻,pp.173-178,1998.
- 5) 戸巻昭三・竹沢三雄:猿骨海岸における沿岸 砂州の岸沖移動について,海洋開発論文集, 第16巻, pp.279-2848, 2000.
- 堀川清司・砂村継夫・近藤浩右:波による 2 次元汀線変化に関する一考察,第 22 回海講 論,pp.329-334, 1975.
- Shibayama, T. and Horikawa, K. : Sediment transport and beach transformation, Proc. 18th Coastal Eng. Conf. ASCE, pp.1439-1458, 1982.
- 8) 服部昌太郎:海岸工学, pp.59-60, コロナ社, 1987.
- 10) 環境圏の新しい海岸工学:(株)フジ・テクノ システム, pp.131-137, 1999.
- 11) 加藤一正:緩勾配海岸と急勾配の前浜に作用

する外力の違い,海岸工学論文集,第40巻, pp.421-425, 1993.

- 木岡信治・山本泰司・本間大輔:北海道オホ ーツク海沿岸における海氷の喫水深と下面 形状 —2004 年観測結果—,北海道開発土木 研究所月報,N0. 630, pp.2-9, 2005.
- 13) 岩垣雄一:最新海岸工学, pp.18-25, 森北出版, 2000
- 14) 高安秀樹: フラクタル, 朝倉書店, 1986.
- Lovejoy, S. : Area-perimeter relation for rain and cloud areas. Science 216, pp.185-187, 1982.
- 16) 宇多高明,鈴木一彰,金子光夫:相良片浜海 岸の海浜変形に関する一考察,土木学会第49
 回年次学術講演会,pp.744-745,1994

著者紹介.

戸巻 昭三(正会員)

(株)クマシロシステム設計(札幌市北区北7条西2 丁目),昭和3年生まれ,昭和28年3月日本大学工 学部土木工学科卒業,昭和28年5月北海道土木部勤 務,昭和56年4月退職,技術士,博士(工学),土 木学会会員.

竹澤 三雄(正会員)

日本大学理工学部土木工学科(東京都千代田区神田 駿河台1-8)昭和13年生まれ,昭和40年3月日本 大学大学院理工学研究科建設工学専攻修士課程終了, 昭和40年4月日本大学理工学部勤務,現在同大学教 授,工学博士,土木学会,地盤工学会会員.

後藤 浩(正会員)

日本大学理工学部土木工学科(東京都千代田区神田 駿河台1-8)昭和45年生まれ,平成7年3月日本大 学大学院理工学研究科土木工学専攻博士課程終了, 平成7年4月日本大学理工学部勤務,現在同大学専 任講師,博士(工学),土木学会会員,日本流体力学 学会会員,国際水理学会会員.

Characteristics of beach profiles and changes of bar formations at coasts of Hokkaido

Shozo TOMAKI, Mitsuo TAKEZAWA and Hiroshi GOTOH

ABSTRACT : This paper presents beach profiles and changes of bar formations at Tomakomai, Ishikari and Sarukotsu coasts in Hokkaido on the basis of the data on the numerous field investigations. Fractal dimensions of beach profiles at their coasts were calculated.

KEY WORDS : beach topography, bar, stable point, self-similarity, fractal dimension